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I. INTRODUCTION

Strong interest in the modeling of planetary interiors, dwarf
stars, and the physical conditions necessary to achieve inertial
confinement fusion (ICF) have driven attention to the properties of
matter at high density, temperature, and pressure (beyond the
megabar limit). Extreme states of matter have been studied using gas
guns, explosives, and Z-pinches, among other methods (see, e.g.,
Refs. 1–4). However in recent years, lasers have become the most
reliable standard tool for creating extreme states of matter. Indeed,
laser experiments enable very high pressures to be reached with
relative ease and with relatively high repetition rates, and in addition
the apparatus required is simpler than that associated with other
methods. The first measurements of the equation of state (EOS) in the
multi-megabar pressure range using laser-driven shocks were per-
formed at the Laboratoire pour l’Utilisation des Lasers Intenses
(LULI) in 1995 by the group of Koenig et al.5 These were soon
followed by the well-known measurements of the hydrogen EOS
performed at the Lawrence Livermore National Laboratory (LLNL)
using the NOVA laser.6 Since then, laser-driven shocks have been
used to measure EOS and other physical properties of a variety of
materials. Using lasers, it has been possible to obtain a completely new
set of experimental data that are important for several fields of
physics: modeling of planetary interiors and dwarf stars,7–10 inertial
confinement fusion (ICF),11–13 and materials science. They have
allowed the generation of multi-megabar shock waves to bringmatter
to extreme conditions of high energy density. Recent experiments in
converging geometry have studied matter in the gigabar pressure

regime.14 This experimental renaissance has been accompanied by
new developments in theoretical models of matter under extreme
conditions,15–18 which are becoming able to describe matter at
densities above those of the solid state and at high temperatures, as
well as technological developments with regard to target design,19,20

novel diagnostic techniques,21–24 and a deeper understanding of the
behavior of consolidated diagnostics.25–27

Beyond the acquisition of EOS data points, there have been ex-
tensive studies of phase transitions and the transport properties of
materials in recent years. There have also been a considerable number of
studies focusing on the optical properties of materials of relevance to
planetary science, such as water and carbon (diamond), these being
among themain constituentsof giantplanets likeUranusandNeptune, as
well as ofmany recently discovered extrasolar planets. In the caseofwater,
these have included detailed studies of reflectivity7 and refractive index.28

Three papers in this “Matter in extreme states created by laser”
special issue are directly related to these aspects of matter under
extreme conditions.9,12,15

Wang et al.12 analyze the behavior of the shock Hugoniot curve
of polycrystalline diamond at pressures relevant to ICF, for which
polycrystalline diamond (also referred as high-density carbon, HDC)
is a promising ablator candidate. The authors of the paper examine
the deviation of the EOS of HDC from that of single-crystal diamond
and confirm its stiffer compressibility due to its smaller grain size and
lower initial density. Their paper also addresses the use of porous
models, which represents an important open problem in high-
pressure physics. Changing the initial density of a sample enables
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the exploration of a wider range of parameters of the EOS of the
material (i.e., it allows data to be obtained away from the main
Hugoniot curve); however, the influence of porosity on the data thus
obtained is still not well understood.

Liu et al.15 combine density functional theory (DFT)with the use
of deep potentials (DPs) to systematically study the electronic thermal
conductivity of warm dense aluminum at the nominal solid-state
density and at temperatures ranging from 0.5 to 5.0 eV. Furthermore,
they use the Green–Kubo method in conjunction with DP molecular
dynamics simulations to obtain the ionic thermal conductivity.

Finally, Chen et al.9 study the electrical conductivity of water
under extreme temperatures and densities. Apart from its relevance to
the modeling of planetary magnetic fields, this work is important
because high-energy-density water is created using a free-electron
laser (FEL) operating at 13.6 nm. This is emerging as a new tool in the
study of matter under extreme conditions (see also Ref. 29), alongside
femtosecond optical lasers, which in thework ofChen et al. are used to
probe the created states (together with the FEL itself) andmeasure the
transient reflection and transmission of an ultrathin water sheet
sample.When the energy density in the water sample is increased, the
thermally excited free-carrier density increases beyond that of the
electron carriers produced by direct photoionization, leading to
significant specular reflection due to the critical electron density
shielding of electromagnetic waves.

The study of the properties of materials like carbon and water
under extreme conditions is of direct relevance to planetary science,
and, as such, it is an important area of laboratory astrophysics. The
paper by Terasaki et al.30 addresses another key problem in laboratory
astrophysics, namely, Rayleigh–Taylor (RT) instability. As is well
known, RT instability occurs when a heavy fluid overlies a light fluid
in a gravitational field. This turns out to be an important scenario for
planetary core formation, in particular for our own planet the Earth.
Here, the instability may develop between the layer of liquid Fe and
Fe–Si alloys beneath the planetary magma ocean. This process has
been discussed based on numerical simulations and experiments
using analog materials. However, experiments on the RT instability
using the core-forming melt have not been performed at high
pressures. In the work of Terasaki et al., the development of RT
instability at the interface between liquid Fe and an Fe–Si alloy is
studied in situ at the high pressures produced using a high-power
laser-shock technique. The perturbation of the Fe–Si surface is ob-
served to develop exponentially with time and to increase with in-
creasing Si content.

The other papers in this special issue address important aspects
of the study of matter under extreme conditions related to the de-
velopment of diagnostics and experimental methods, including better
modeling techniques and a deeper understanding of how consoli-
dated diagnostics work [e.g., velocity interferometer for any reflector
(VISAR)].

II. DEVELOPING AND UNDERSTANDING OPTICAL
DIAGNOSTICS

Diagnostics are of course a key element in all experiments, and
optical diagnostics often play a central role. Therefore, developing
novel approaches while also gaining deeper understanding of how
consolidated diagnostics works is essential to advancing the field of
study of matter in extreme conditions.

A velocity interferometer for any reflector (VISAR)31 is a
standard diagnostic used in practically all laser-driven shock ex-
periments nowadays either for measurements of the free surface
velocity of laser-shocked opaquematerials or for directmeasurements
of the shock velocity in transparent materials. These velocities are
then used to define the basic parameters (pressure, temperature, and
density) of the compressed material.

In this context, the paper by Yan et al.26 uses nonequilibrium
molecular dynamics simulations to provide an atomic-scale picture of
the dynamics of particles near the surface of a medium under ultra-
strong shocks. It is shown that the measured free surface velocity
under ultra-strong shocks is actually the velocity of the critical surface
at which the incident probe light is reflected. They show that the
doubling rule commonly used in the case of relatively weak shocks to
determine particle velocity behind the shock front is generally not
valid under ultra-strong shocks. Also, the free surface velocity has a
single-peaked structure: after a short period of acceleration, it
exhibits a long slowly decaying tail, which is not sensitive to the
atomic mass of the medium. A scaling law for the free surface velocity
is also proposed, which may be used to improve measurements of
particle velocity in future laser-driven shock experiments.

A diagnostic complementary to VISAR is photonic Doppler
velocimetry (PDV). In general, this is employed in experiments where
shock waves are created by guns or explosives. In their paper, Nissim
et al.25 introduce a novel system design for PDV adapted to laser-
driven shock wave experiments and present some first experimental
results obtained at the Israel National Laser Facility at the Soreq
Nuclear Research Center using Au foils of different thicknesses
(10, 15, 20, 30, and 40 μm). They measured the free surface velocity of
gold 2 ns after shock breakout. The result (7.3 km/s, with an error of
1.5%) corresponds to a pressure of 7 Mbar. Nissim et al. expect that it
will be possible to extend their measurements to higher pressures by
increasing the beat frequency.

III. RADIATION AND PARTICLE SOURCES AS NOVEL
DIAGNOSTIC TOOLS

Short-pulse high-intensity lasers can drive very intense and short
pulses of x-rays and particles that can be used to probe matter under
extreme conditions. In recent years, such secondary radiation has
begun to be used extensively in conjunction with laser-driven
experiments.32,33

In this context, Rosmej et al.22 discuss the generation of betatron
radiation fromdirect laser-accelerated electrons in a plasma of density
close to the critical electron density. They show how this approach
allows the development of ultrabright x-ray sources. Experimental
data, obtained on the PHELIX facility using 20 J of focused laser
energy, point to the generation of betatron radiationwith an ultrahigh
photon number of 7 3 1011 per shot in the 1–30 keV range. These
results are confirmed by 3D particle-in-cell simulations.

In their paper, Martynenko et al.23 deal instead with the opti-
mization of more conventional laser-driven x-ray sources for probing
matter under extreme conditions by means of x-ray absorption
spectroscopy. They have used solid targets of different materials and
several laser configurations to optimize plasma-based x-ray emission.
In particular, they present experimental results on the spectrally
resolved emission of aluminum and silicon, and they show that the
maximum laser-to-x-rays conversion efficiency is obtained by using
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high contrast, high intensity, and short duration, pulses, and by using
targets of thickness about 10 μm.They alsofind that the use of a plastic
coating on the target additionally increases the integrated emissivity
by suppressing the expansion of the emission layer due to the laser
prepulse.

Laser-driven protons also have been used to probe matter under
extreme conditions. In this context, the paper by Raffestin et al.21

describes experimental results on proton acceleration obtained using
the high-energy petawatt PETAL laser system. Despite a moderately
relativistic (<1019 W/cm2) laser intensity, proton energies as high as
51MeV have beenmeasured, significantly above those expected from
preliminary numerical simulations using idealized interaction con-
ditions. Improved hydrodynamic and kinetic simulations, taking into
account the actual laser parameters, show the importance of hot-
electron production in the extended, low-density preplasma created
by the laser pedestal. Two effects contribute to boost the electron
acceleration: (i) stimulated backscattering of the incoming laser light,
triggering stochastic electronheating in the counter-propagating laser
beam, and (ii) laser filamentation, leading to local intensifications of
the laser field and plasma channeling. Moreover, owing to the large
(∼100 μm)waist and picosecond duration of thePETALbeam, the hot
electrons can sustain a high electrostatic field at the target rear side
for a long time, thus enabling efficient target normal sheath accel-
eration (TNSA) of the rear-side protons.

IV. TARGET OPTIMIZATION

Deeper understanding of how diagnostics work and the con-
sequent enhancement of their performance go hand in hand with
improvements in target manufacture. The paper by Calestani et al.19

addresses the question of target optimization for enhancement of
laser absorption coupling to allow the creation of extreme conditions
of matter. Creation of warm dense matter requires efficient coupling
of ultra-intense ultrashort laser pulse, since the compression of a flat
target is usually very low owing to reflection of the laser light at the
plasma critical density. Coupling can be improved in two ways: either
by ensuring that laser light impinges on the target before arrival of the
main laser pulse, creating a micrometer-scale plasma, or by using
targets with nano- or microstructured surfaces.

Structuring the surface of the target with micro- or nano-
patterning can enhance coupling, and, depending on the laser features
and target geometry, the conditions can be met that allow the gen-
eration of hot dense matter, high-brightness radiation sources, or
even high-energy particle beams. Calestani et al.19 have used ZnO
nanowires in this context to produce micro- and nano-structuring
on a thin-foil target.

Their choice of a thin-foil substrate was dictated by the need to
achieve proton acceleration via TNSA at the rear side. The parameters
of the chemical process used for fabrication of the nanowires were
studied in depth to enable control over the nanowire size, shape, and
distribution. Moreover, the manufacturing process was optimized to
provide accurate reproducibility of key parameters in the widest
possible range, as well as good homogeneity over the whole foil area.

V. CONCLUSION

The study ofmatter under extreme conditions is a blooming area
of research, as can be seen, for instance, from other special issues of
Matter and Radiation at Extremes (“Magnetized plasmas in HEDP”

and “Progress in matter and radiation at extremes in China”), and
lasers have clearly become a standard research tool in this field. At the
same time, new tools are emerging (e.g., the use of x-ray free-electron
lasers), and progress is being made in theoretical understanding, in
developing new diagnostics, and in designing new types of experi-
ments. Applications range from ICF to planetary science and as-
trophysics. The interesting research articles included in this special
issue on “Matter in extreme states created by laser” give a taste of the
current status of research and a good overview of recent trends in this
branch of science.
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J. P. Perrine, M. Temporal, and S. Atzeni, “Relative consistency of equation of state
by laser driven shock waves,” Phys. Rev. Lett. 74, 2260 (1995).
6G.W. Collins, P. Celliers, L. B. Da Silva, R. Cauble, D. Gold, M. Foord, K. S. Budil,
R. Stewart, N. C. Holmes, M. Ross, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, and
A. Ng, “Equation of state measurements of hydrogen isotopes on Nova,” Phys.
Plasmas 5, 1864 (1998).
7P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koenig, E. Henry, A. Benuzzi-
Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H.
Eggert, K. K.M. Lee, L. R. Benedetti, R. Jeanloz, I.Masclet, N. Dague, B.Marchet, M.
Rabec Le Gloahec, Ch. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson,
“Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41 (2004).
8D. Batani, F. Strati, H. Stabile, M. Tomasini, G. Lucchini, A. Ravasio,M. Koenig, A.
Benuzzi-Mounaix, H. Nishimura, Y. Ochi, J. Ullschmied, J. Skala, B. Kralikova, M.
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